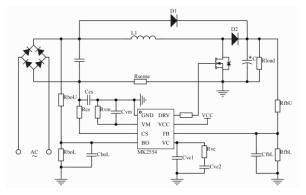


# MK2554 Continuous Conduction Mode PFC Controller

# 1. Description

The MK2554 family are continuous conduction mode (CCM) power factor correction (PFC) controllers for high performance AC/DC power systems. With multimode control strategy, the MK2554 can achieve ultralow THD and near unity power factor under different operation conditions. The switching frequency is fixed internally. A better EMI performance version is provided by MK2554A with frequency dithering. The MK2554 operates over a wide supply voltage range from 11V to 28V, which is suitable for various application scenarios. MK2554 integrates open/short protection functions for feedback and sense pin to reduce chances of system damages. The MK2554 also features other system-level protections including peak current limit, input brown-out detection, output over-voltage and undervoltage detection. An accurate reference voltage for providing precise and reliable protection thresholds. The internal clamp circuitry limits the gate drive voltage less than 15.5 V.


# 2. Applications

- Boost PFC Power Converters
- Industrial Power Supplies
- Server and Desktop Power Supplies
- High Power LED Power Supplies

### 3. Features

- Wide VCC Voltage Range from 11V 28V
- Ultra-Low Startup Current < 55uA
- Accurate Fully Integrated 65kHz / 130kHz / 200kHz Oscillator
- Dynamic Load Enhancer
- Frequency Dithering (MK2554A)
- Soft-Start for Smoothly Startup Operation
- ±1% Voltage Reference
- Multimode Operation for Optimized Operation over the Line/Load Range
- Feedback and Sense Pin Open/Short Protection
- Available in SOP-8 Package

# 4. Typical Application



**Figure 1. Typical Application Diagram** 



# 5. Order Information

| Order Part Number | Descriptions               |
|-------------------|----------------------------|
| MK2554X65AB       | SOP-8, tape, 4000 pcs/reel |
| MK2554X130AB      | SOP-8, tape, 4000 pcs/reel |
| MK2554X200AB      | SOP-8, tape, 4000 pcs/reel |

# 6. Pin Configuration and Functions

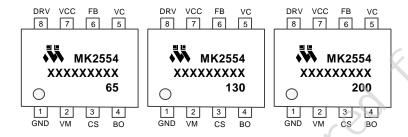



Figure 2. Pin Connection (top view)

Table 1. Pin Functions

|     | Pin  | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. | Name | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1   | GND  | Device ground reference.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2   | VM   | This pin provides a voltage VM for the PFC duty cycle modulation, with open/short protection. Connect a resistor $R_{VM}$ to GND, which is proportional to the input impedance of the PFC circuits to adjust the maximum delivered power by the PFC stage. The device operates in average current mode if an external capacitor $C_{VM}$ is further connected between this pin and GND. Otherwise, it operates in peak current mode. |
| 3   | CS   | This pin sources a current lcs which is proportional to the inductor current. The sensed current lcs is for duty cycle modulations, also for protections: inrush current detection, overcurrent protection (OCP) and zero current crossing detection (ZCD).                                                                                                                                                                          |
| 4   | ВО   | This pin is connected to the rectified main input voltage via a resistor divider with a capacitor connected between BO pin and ground.BO pin detects a voltage signal proportional to the average input voltage. It is used for input brown out protection and overpower limitation (OPL).                                                                                                                                           |
| 5   | VC   | This pin is the output of the transconductance error amplifier. $V_{\mathbb{C}}$ pin is connected to external type–2 compensation components to limit the $V_{\mathbb{C}}$ bandwidth typically below 20Hz to achieve near unity power factor. This pin also has open/short protection.                                                                                                                                               |
| 6   | FB   | Negative input of the transconductance error amplifier. The information on the output voltage of the PFC converter is fed into the pin through a resistor divider.                                                                                                                                                                                                                                                                   |
| 7   | VCC  | This pin is the positive supply of the IC. The device starts to operate when $V_{CC}$ exceeds Vcc-on and turns off when VCC goes below Vcc-off. After start-up, the operating range is 11V to 28V.                                                                                                                                                                                                                                   |
| 8   | DRV  | Integrated push-pull gate driver for one or more external power MOSFETs, with 1.5A sink and 1.5A source capability. Output voltage is clamped at 15.5 V.                                                                                                                                                                                                                                                                             |



# 7. Specifications

# 7.1 Absolute Maximum Ratings (1)

| Symbol           | Parameter                         | Min  | Max | Unit |
|------------------|-----------------------------------|------|-----|------|
| VCC              | supply voltage VCC                | -0.3 | 30  | X    |
| DRV (2)          | output gate driver                | -0.3 | 20  |      |
| FB/VC/BO/VM (2)  | voltage on pin FB, VC, BO, VM     | -0.3 | 8   |      |
| CS               | voltage on pin CS                 | -3   | 8   |      |
| TJ               | operating junction temperature,   | -40  | 150 |      |
| T <sub>stg</sub> | storage temperature               | -55  | 150 | °C   |
| T <sub>sld</sub> | soldering temperature (10 second) |      | 260 |      |

#### Notes:

- (1) Stresses beyond the "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated in "RECOMMENED OPERATING CONDITIONS". Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- (2) Output pin not to be voltage driven.

# 7.2 ESD Ratings

|                            |                                                                               | Value | Unit |
|----------------------------|-------------------------------------------------------------------------------|-------|------|
| Electrostatic              | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)              | ±2500 | V    |
| discharge V <sub>ESD</sub> | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) | ±2000 |      |

#### Notes:

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

# 7.3 Moisture Sensitivity Level

| Moisture Sensitivity Level | SOP-8 | MSL1 |
|----------------------------|-------|------|
|                            |       |      |

# 7.4 Recommended Operating Conditions

|                      |                                                  | Min | Max | Unit |
|----------------------|--------------------------------------------------|-----|-----|------|
| Recommended          | VCC supply voltage                               | 11  | 28  | V    |
| Operation Conditions | operating junction temperature (T <sub>J</sub> ) | -40 | 125 | °C   |



|                            |                      |                                    | Value | Unit |
|----------------------------|----------------------|------------------------------------|-------|------|
| Package Thermal            | SOP-8                | $	heta_{JA}$ (Junction to ambient) | 128   | °C/W |
| Resistance (1)             |                      | $\theta_{JC}$ (Junction to case)   | 75    | >    |
| Note: (1) Measured on JESD | 151-7 /Llaver PCB    |                                    |       | - 1  |
| (1) Measured on JESD       | 75 1-7, 4-layer FOB. |                                    |       | Ch   |
|                            |                      |                                    | <     |      |
|                            |                      |                                    | 60)   | •    |
|                            |                      |                                    |       |      |
|                            |                      |                                    | 20    |      |
|                            |                      |                                    | 0     |      |
|                            |                      | 0.                                 |       |      |
|                            |                      | 10X                                |       |      |
|                            |                      | 0                                  |       |      |
|                            |                      |                                    |       |      |
|                            |                      |                                    |       |      |
|                            |                      |                                    |       |      |
|                            |                      |                                    |       |      |
|                            |                      |                                    |       |      |
|                            |                      |                                    |       |      |
|                            | X                    |                                    |       |      |
|                            |                      |                                    |       |      |
| >                          | ent.                 |                                    |       |      |
|                            | ent                  |                                    |       |      |
| Sil.                       | ent.                 |                                    |       |      |
| CONFIL                     | ent.                 |                                    |       |      |
| CONFIL                     | ent                  |                                    |       |      |
| Confila                    |                      |                                    |       |      |
| COULT                      |                      |                                    |       |      |
| COULT                      |                      |                                    |       |      |
| CONFIL                     |                      |                                    |       |      |
| CONFIL                     |                      |                                    |       |      |
| Confila                    |                      |                                    |       |      |



### 7.6 Electrical Characteristics

-40°C  $\leq$  T<sub>A</sub> = T<sub>J</sub>  $\leq$  125°C. V<sub>CC</sub> = 15V<sub>DC</sub>, 1µF from VCC to GND. All voltages are measured with respect to ground (pin 1). Currents are positive when flowing into the IC, unless otherwise specified.

| Vcc UVLO Rising Vcc UVLO Falling Vcc UVLO Hysteresis Start-up Current         | Before turn-on,                                                                                                                                                                                                                                                                                                                                                        | 9.50<br>8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.70<br>9.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.50<br>9.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                     |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| V <sub>CC</sub> UVLO Falling V <sub>CC</sub> UVLO Hysteresis Start-up Current |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                     |
| V <sub>CC</sub> UVLO Hysteresis Start-up Current                              |                                                                                                                                                                                                                                                                                                                                                                        | 8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |
| Start-up Current                                                              |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V                                                     |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                                     |
| Operating Current                                                             | V <sub>CC</sub> =9V                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μΑ                                                    |
| Sportaining Outron                                                            | $V_{CC}$ =15V, no load, no switching, $T_J$ =25°C                                                                                                                                                                                                                                                                                                                      | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA                                                    |
| Shutdown Mode<br>Current                                                      | V <sub>CC</sub> =15V, V <sub>FB</sub> =0V                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uA                                                    |
| Block                                                                         | . (                                                                                                                                                                                                                                                                                                                                                                    | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
| Voltage Reference                                                             | V <sub>CC</sub> =15 V                                                                                                                                                                                                                                                                                                                                                  | 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V                                                     |
| Voltage Reference                                                             | V <sub>CC</sub> =15 V; T <sub>J</sub> =25°C                                                                                                                                                                                                                                                                                                                            | 2.475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                     |
| Error Amplifier Current<br>Capability (1)                                     | V <sub>CC</sub> =15 V                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ±28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μA                                                    |
| Error Amplifier Gain (1)                                                      | V <sub>CC</sub> =15 V                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μS                                                    |
| Pin 6 Bias Current                                                            | $V_{FB} = V_{REF}$                                                                                                                                                                                                                                                                                                                                                     | -500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nA                                                    |
| Maximum Control<br>Voltage                                                    | V <sub>FB</sub> = 2 V                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                     |
| Minimum Control<br>Voltage                                                    | V <sub>FB</sub> = 3 V                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                     |
| $\Delta V_{C} = V_{C\_MAX} - V_{C\_MIN}$                                      |                                                                                                                                                                                                                                                                                                                                                                        | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                                                     |
| V <sub>OUT</sub> Low Detect<br>Threshold/V <sub>REF</sub>                     |                                                                                                                                                                                                                                                                                                                                                                        | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %                                                     |
| V <sub>OUT</sub> Low Detect<br>Hysteresis/V <sub>REF</sub>                    |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                     |
| nse Block                                                                     |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
| Overcurrent Protection Threshold                                              | T <sub>J</sub> =25°C                                                                                                                                                                                                                                                                                                                                                   | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μΑ                                                    |
| itation Block                                                                 |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
| Overpower Limitation<br>Threshold                                             | I <sub>OPL</sub> = I <sub>CS</sub> *V <sub>BO</sub>                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μVA                                                   |
|                                                                               | Current  Block  Voltage Reference  Voltage Reference  Error Amplifier Current Capability (1)  Error Amplifier Gain (1)  Pin 6 Bias Current  Maximum Control Voltage  Minimum Control Voltage  ΔVc = Vc_MAX - Vc_MIN  Vout Low Detect Threshold/VREF  Vout Low Detect Hysteresis/VREF  nse Block  Overcurrent Protection Threshold  itation Block  Overpower Limitation | no switching, T <sub>J</sub> =25°C  Shutdown Mode Current  Block  Voltage Reference Voc=15 V  Voltage Reference Voc=15 V  Voc=15 V  Voc=15 V  Error Amplifier Current Capability (1)  Error Amplifier Gain (1)  Pin 6 Bias Current Voc=15 V  Pin 6 Bias Current Voltage Voltage Voltage VFB = 2 V  Minimum Control Voltage Vout Low Detect Threshold/VREF  Vout Low Detect Hysteresis/VREF  nse Block  Overcurrent Protection Threshold  Overpower Limitation Voc=15 V  Vcc=15 V  Vcc=15 V  Vcc=15 V  VFB = VREF  VFB = 3 V  TFB = 3 | Operating Current       V <sub>CC</sub> =15V, no load, no switching, T <sub>J</sub> =25°C         Shutdown Mode Current       V <sub>CC</sub> =15V, V <sub>FB</sub> =0V         Block       Voltage Reference       V <sub>CC</sub> =15 V       2.43         Voltage Reference       V <sub>CC</sub> =15 V; T <sub>J</sub> =25°C       2.475         Error Amplifier Current Capability (¹)       V <sub>CC</sub> =15 V         Error Amplifier Gain (¹)       V <sub>CC</sub> =15 V         Pin 6 Bias Current       V <sub>FB</sub> = V <sub>REF</sub> -500         Maximum Control Voltage       V <sub>FB</sub> = 2 V         Minimum Control Voltage       V <sub>FB</sub> = 3 V         ΔV <sub>C</sub> = V <sub>C_MAX</sub> - V <sub>C_MIN</sub> 2.8         V <sub>OUT</sub> Low Detect Threshold/V <sub>REF</sub> 92.0         V <sub>OUT</sub> Low Detect Hysteresis/V <sub>REF</sub> 92.0         Inse Block       Overcurrent Protection Threshold       T <sub>J</sub> =25°C       190         Itation Block       Overpower Limitation       I <sub>D</sub> = 1co *V <sub>D</sub> | Operating Current         V <sub>CC</sub> =15V, no load, no switching, T <sub>J</sub> =25°C         0.8           Shutdown Mode Current         V <sub>CC</sub> =15V, V <sub>FB</sub> =0V         156           Block           Voltage Reference         V <sub>CC</sub> =15 V         2.43         2.50           Voltage Reference         V <sub>CC</sub> =15 V; T <sub>J</sub> =25°C         2.475         2.500           Error Amplifier Current Capability (¹)         V <sub>CC</sub> =15 V         230           Error Amplifier Gain (¹)         V <sub>CC</sub> =15 V         230           Pin 6 Bias Current         V <sub>FB</sub> = V <sub>REF</sub> -500           Maximum Control Voltage         V <sub>FB</sub> = 2 V         3.6           Minimum Control Voltage         V <sub>FB</sub> = 3 V         0.6           ΔV <sub>C</sub> = V <sub>C_MAX</sub> - V <sub>C_MIN</sub> 2.8         3           V <sub>OUT</sub> Low Detect Threshold/V <sub>REF</sub> 92.0         94.7           V <sub>OUT</sub> Low Detect Hysteresis/V <sub>REF</sub> 2           nse Block         Overcurrent Protection Threshold         T <sub>J</sub> =25°C         190         200           Overpower Limitation         I <sub>AB</sub> = I <sub>AB</sub> *V <sub>AB</sub> 200 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



| I <sub>CS (OPL1)</sub>                   | Overpower Current<br>Threshold                                     | $V_{BO} = 0.9 \text{ V}, V_{M} = 3 \text{ V}$                                                   | 175  | 210  | 245  | μA  |
|------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|------|------|-----|
| I <sub>CS (OPL2)</sub>                   | Overpower Current<br>Threshold                                     | $V_{BO} = 2.7 \text{ V}, V_{M} = 3 \text{ V}$                                                   | 60   | 75   | 90   | μA  |
| PWM Bloc                                 | k                                                                  |                                                                                                 |      |      |      |     |
| D <sub>CYCLE</sub>                       | Duty Cycle Range (1)                                               |                                                                                                 |      | 0-97 |      | %   |
| T <sub>LEB</sub>                         | Leading Edge Blanking<br>Time (1)                                  |                                                                                                 |      | 150  |      | ns  |
| Oscillator                               | Block                                                              | 1                                                                                               | •    |      |      |     |
| F <sub>SW</sub>                          | Switching Frequency                                                | MK2554X65AB,<br>T <sub>J</sub> =25°C                                                            | 60   | 65   | 70   | kHz |
| Fsw                                      | Switching Frequency                                                | MK2554X130AB,<br>T <sub>J</sub> =25°C                                                           | 120  | 130  | 140  | kHz |
| F <sub>SW</sub>                          | Switching Frequency                                                | MK2554X200AB,<br>T <sub>J</sub> =25°C                                                           | 184  | 200  | 216  | kHz |
| Brown-out                                | Detection Block                                                    |                                                                                                 |      | 0    | •    | •   |
| $V_{BOH}$                                | Brown-out Voltage<br>Threshold (rising)                            |                                                                                                 | 1.23 | 1.30 | 1.37 | V   |
| V <sub>BOL</sub>                         | Brown-out Voltage<br>Threshold (falling)                           | ~ (                                                                                             | 0.65 | 0.70 | 0.75 | V   |
| I <sub>BO</sub>                          | Pin 4 Input Bias<br>Current                                        | V <sub>BO</sub> = 1 V                                                                           | -300 |      | 300  | nA  |
| Current M                                | odulation Block                                                    |                                                                                                 |      |      |      |     |
| I <sub>M1</sub>                          | Multiplier Output<br>Current                                       | $C_{VC} = 30 \text{ nF}, V_{BO} = 0.9 \text{ V}, I_{CS} = 25 \mu\text{A}, V_{FB} = 2 \text{ V}$ |      | 1.9  |      | μA  |
| I <sub>M2</sub>                          | Multiplier Output<br>Current                                       | $C_{VC} = 30 \text{ nF}, V_{BO} = 0.9 \text{ V}, I_{CS} = 75 \mu\text{A}, V_{FB} = 2 \text{ V}$ |      | 5.8  |      | μА  |
| I <sub>M3</sub>                          | Multiplier Output<br>Current                                       | $C_{VC} = 30 \text{ nF}, V_{BO} = 1.5 \text{ V}, I_{CS} = 75 \mu\text{A}, V_{FB} = 2 \text{ V}$ | 7.5  | 10.0 | 12.5 | μA  |
| I <sub>M4</sub>                          | Multiplier Output<br>Current                                       | $V_{C} = 0.8 \text{ V}, V_{BO} = 0.9 \text{ V}, I_{CS} = 25 \mu\text{A}, V_{FB} = 2 \text{ V}$  |      | 28   |      | μΑ  |
| I <sub>M5</sub>                          | Multiplier Output<br>Current                                       | $V_{C} = 0.8 \text{ V}, V_{BO} = 0.9 \text{ V}, I_{CS} = 75 \mu\text{A}, V_{FB} = 2 \text{ V}$  |      | 80   |      | μA  |
| Overvoltag                               | ge Protection                                                      |                                                                                                 |      |      |      |     |
| V <sub>OVP</sub> /V <sub>REF</sub>       | Ratio (Overvoltage<br>Threshold/ V <sub>REF</sub> )                |                                                                                                 | 102  | 105  | 108  | %   |
| $V_{OVP(HYS)}$<br>$V_{REF}$              | Ratio (Overvoltage<br>Threshold Hysteresis /<br>V <sub>REF</sub> ) |                                                                                                 |      | 3    |      | %   |
| Undervolta                               | age Protection                                                     | ı                                                                                               |      |      |      | 1   |
| V <sub>UVP(ON)</sub><br>V <sub>REF</sub> | UVP Activate Threshold Ratio                                       |                                                                                                 | 5    | 8    | 11   | %   |



| $V_{\text{UVP(OFF)}}$ | UVP Deactivate                                     |                                                              | 10  | 12   | 14 | %  |
|-----------------------|----------------------------------------------------|--------------------------------------------------------------|-----|------|----|----|
| $N_{REF}$             | Threshold Ratio                                    |                                                              |     |      |    | 70 |
| $V_{\text{UVP(H)}}$   | UVP Lockout                                        |                                                              |     | 4    |    | %  |
| $N_{REF}$             | Hysteresis                                         |                                                              |     | 7    |    | 70 |
| Thermal Shutdown      |                                                    |                                                              |     |      |    |    |
| T <sub>SD</sub>       | Thermal Shutdown Threshold (1)                     |                                                              | 150 |      |    | °C |
| H <sub>SD</sub>       | Thermal Shutdown<br>Hysteresis (1)                 |                                                              |     | 30   |    | °C |
| Gate Drive            | •                                                  |                                                              |     |      |    | V  |
| $T_RR$                | Gate Drive Voltage<br>Rise Time from 1 V to<br>11V | $C_{LOAD} = 2.2nF$<br>$R_{GS} = 10k\Omega$<br>$V_{CC} = 12V$ |     | 58   | O  | ns |
| $T_{RF}$              | Gate Drive Voltage Fall<br>Time from 11 V to 1 V   | $C_{LOAD} = 2.2nF$<br>$R_{GS} = 10k\Omega$<br>$V_{CC} = 12V$ |     | 30   |    | ns |
| $I_{VG\_H}$           | Maximum Source<br>Current (1)                      |                                                              | <   | 1.5  |    | Α  |
| I <sub>VG_L</sub>     | Maximum Sink Current                               |                                                              | 00, | 1.5  |    | А  |
| R <sub>sink</sub>     | Pull-down Impedance                                | I <sub>LOAD</sub> = 100mA                                    | 57  | 1    |    | Ω  |
| $V_{VG\_H}$           | Pin 8 Clamp Voltage                                | V <sub>CC</sub> = 18V                                        |     | 15.5 |    | V  |

#### Note:

Meraki confidential

<sup>(1)</sup> Values are guaranteed by design and verified by characterization on bench, not tested in production.



# 7.7 Typical Characteristics

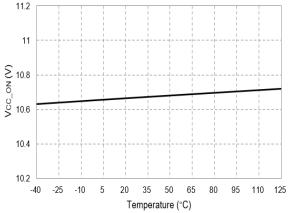



Figure 3. VCC UVLO Rising vs. Temperature

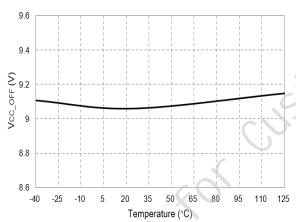



Figure 4. VCC UVLO Falling vs. **Temperature** 

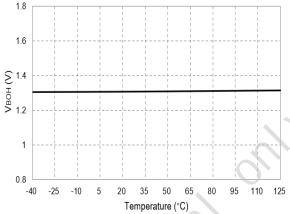



Figure 5. Brown-out Voltage (Rising) vs. **Temperature** 

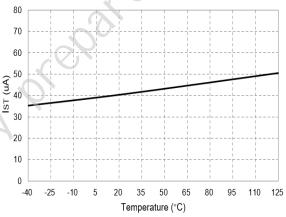



Figure 6. Start-Up Current (Before Turn-On) vs. Temperature

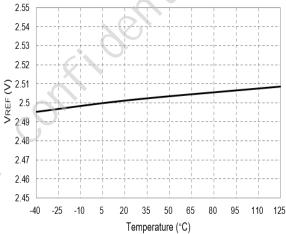



Figure 7. Reference Voltage vs. Temperature



Figure 8. Maximum Control Voltage vs. **Temperature** 



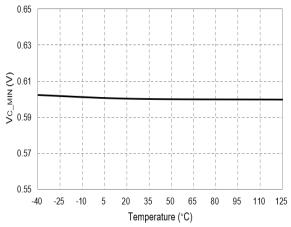



Figure 9. Minimum Control Voltage vs. **Temperature** 

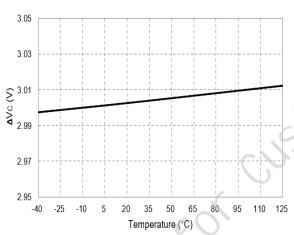



Figure 10.  $\triangle$  Vc vs. Temperature

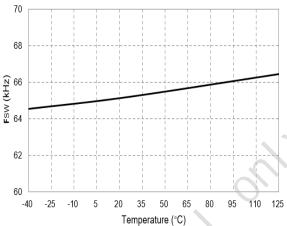
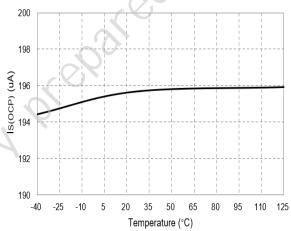




Figure 11. Switching Frequency (Based on 65 kHz) vs. Temperature



**Figure 12. Overcurrent Protection** Threshold vs. Temperature

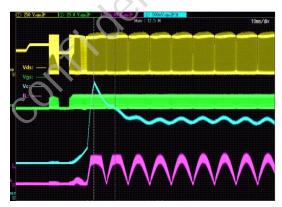
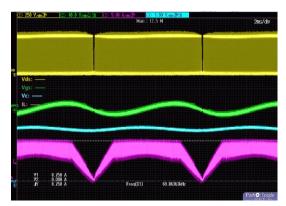




Figure 13. Dynamic Load Enhancer



**Figure 14. Overcurrent Protection** 



# 8. Detailed Description

#### 8.1 Overview

The MK2554 family are continuous conduction mode PFC controllers designed to operate in fixed frequency. With multimode control strategy, the MK2554 can achieve ultralow THD and near unity power factor under different operation conditions. At the same time, the frequency dithering version (MK2554A) can be selected for spreading the noise spectrum and reducing the possible radiated noise.

In continuous conduction mode, the lower peak current and di/dt value reduce power loss and improve system efficiency. The reliability of internal logic and protection is guaranteed by the accurate reference voltage. The MK2554 simplifies PFC surrounding circuit, so that the design time of production can be saved.

The MK2554 is pin compatible with other industrial controllers providing similar functions, while richer enhancement features have been implemented to reduce bill of materials (BOM) cost. The system performance is improved by increasing the operating voltage range and optimizing the startup strategy, which makes the controller easier to start in the high-power systems. The device also features an innovative dynamic output voltage protection enhancement circuit, which improves the performance of the system under dynamic load. The soft start function and optimized operating currents of the device result in low current stress and low power consumption. The intelligent protection functions and strategies of MK2554 can greatly improve system reliability, such as driver output voltage clamp, feedback pin open or short protection, brown in and brown out protection, output overvoltage protection (OVP), output undervoltage protection (UVP), overcurrent protection (OCP), and smart overpower limitation (OPL).

Confi denti



# 8.2 Functional Block Diagram

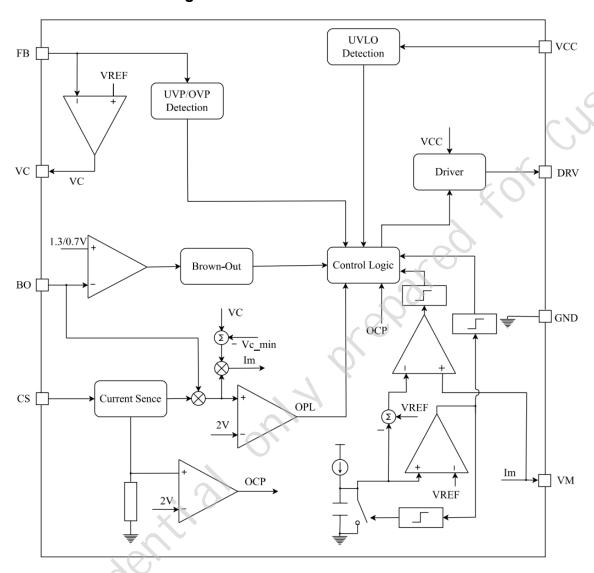



Figure 15. Block Diagram



### 8.3 Feature Description

### 8.3.1 VCC Power Supply and Undervoltage Lockout (UVLO)

The VCC operation voltage is between 11V to 28V, which makes MK2554 suitable for a variety of application scenarios. For the best performance, use a typical 0.1uF decoupling capacitor as close as possible between the VCC and GND pins of MK2554. A VCC bypass capacitor (1uF to 10uF) in parallel to the decoupling capacitor is also recommended to reduce noise ripple during switching. MK2554 has an internal undervoltage lockout (UVLO) protection feature in the VCC supply circuit blocks. When the voltage on the VCC pin exceeds  $V_{\text{CC-ON}}$ , the controller exits the UVLO state and activates the circuitry. When VCC voltage drops to below  $V_{\text{CC-OFF}}$ , the controller re-enters the UVLO state.

When the VCC supply voltage of MK2554 is higher than 18V, in order to avoid the damage of power MOSFETs due to high driver voltage, the voltage of MK2554 DRV (Pin 8) is clamped to  $V_{VG\ H}$ .

#### 8.3.2 Brown-In and Brown-Out Protection

As the power line voltage decreases, the input current must increase to maintain a constant output voltage for any specific load. Brownout protection helps prevent excess system thermal stress (due to the higher RMS input current) from exceeding a safe operating level.

The MK2554 detects the input voltage after rectification by  $V_{BO}$  (Pin 4) for input undervoltage protection. The rms value of input voltage is converted into the average value because of the existence of the capacitance  $C_{BO}$ . The  $C_{BO}$  typically uses a typical 0.47uF filter capacitor. Figure 16 and Figure 17 show the  $V_{BO}$  waveforms before and after filtering, respectively. The  $V_{AC}$  is the rms value of input voltage.  $V_{BO}$  voltage can be described in Equation 1.

$$V_{BO} = \frac{2\sqrt{2}}{\pi} V_{AC} \times \frac{R_{BOL}}{R_{BOL} + R_{BOU}} \quad (1)$$

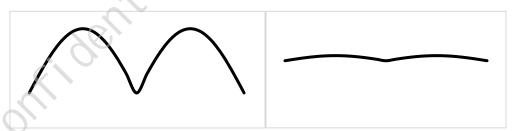



Figure 16. Before Average

Figure 17. After Average

When  $V_{BO}$  exceeds  $V_{BOH}$  (1.3 V, the typical value), and the VCC pin exceeds  $V_{CC-ON}$ , the power stage soft starts as VC pin rises with controlled voltage. If the BO pin voltage  $V_{BO}$  falls below  $V_{BOL}$  (0.7 V, the typical value), a brown-out condition is detected, and gate driver output will not immediately turn off until the end of deglitch time. Thanks to a larger hysteresis between the brown out and brown in, the MK2554 can operate stably under critical input voltage conditions.



### 8.3.3 Overcurrent Protection (OCP) and Overpower Limitation (OPL)

Under certain conditions such as inrush, brown-out recovery, and output over-load, the PFC power stage experiences large currents. It is critical that the power devices are protected from switching during these conditions.

In order to achieve real-time sampling of inductance current, the resistors  $R_{\text{sense}}$  and  $R_{\text{CS}}$  are needed.  $R_{\text{sense}}$  is a low value resistor in the return path of input rectifier, the other side of the resistor is tied to the system ground. The voltage is sensed on the rectifier side of the sense resistor and is always negative. The MK2554 controller maintains the voltage at CS pin to be zero voltage by sourcing an  $I_{\text{CS}}$  current. The sensing current  $I_{\text{CS}}$  represents the inductor current  $I_{\text{L}}$ , so that, the current value  $I_{\text{CS}}$  can be calculated in Equation 2. The current  $I_{\text{CS}}$  is used in the PFC duty modulation to generate the multiplier voltage VM, overcurrent protection (OCP) and overpower limitation (OPL).

$$I_{cs} = \frac{R_{sense}}{R_{cs}} I_L$$
 (2)

Once  $I_{CS}$  exceeds overcurrent protection threshold ( $I_S$ ) or  $I_{CS}^*$   $V_{BO}$  exceeds overpower limitation threshold, the MOSFET is turned off, the MK2554 triggers overcurrent protection or overpower limitation, the MOSFET stays in OFF-state until the PWM latch-off is reset by the clock signal.

### 8.3.4 Overvoltage Protection (OVP) and Undervoltage Protection (UVP)

The accuracy of the MK2554 internal reference voltage ( $V_{REF}$ ) used for the output regulation, which is less than  $\pm 3\%$  over the temperature range. In particular, the accuracy can be less than  $\pm 1\%$  at room temperature. The output voltage  $V_{out}$  of the PFC circuits is sensed at FB pin via the resistor divider ( $R_{FBL}$  and  $R_{FBU}$ ). The output voltage ( $V_{out}$ ) can be obtained in Equation 3.

$$V_{out} = \frac{R_{FBL} + R_{FBU}}{R_{FBL}} V_{REF} \quad (3)$$

In a similar way, the FB pin voltage  $(V_{FB})$  can be calculated in Equation 4.

$$V_{FB} = \frac{R_{FBL}}{R_{FBL} + R_{FBU}} V_{out} \quad (4)$$

The MK2554 monitors the voltage on the FB pin in real time. When the output voltage is higher than the overvoltage protection threshold, the OVP is triggered and the driver signal will be stopped. The MK2554 will not release protection until  $V_{FB}$  drops below the OVP voltage threshold with a hysteresis.

When FB pin voltage is below the UVP threshold, the MK2554 is shut down and reduces its power consumption to a lower value. To restart the IC, the FB pin voltage must exceed UVP threshold with a hysteresis. Using this function, the user can flexibly control the operating state of the MK2554.

The MK2554 also provides a certain degree of additional security. When the lower resistor of the output resistor divider is shorted to ground or the upper resistor is missing, the MK2554 enters the off-protection state. The MK2554 VC and VM pin also has similar functions.



### 8.3.5 Dynamic Load Enhancer (DLE)

The output voltage of PFC stages may exhibit excessive over or under shoots because of load steps or input voltage changes. During large changes in load or input voltage, dynamic load enhancer acts to speed up the slow response of the low-bandwidth voltage loop. As shown in Figure 18, if the output voltage is out of regulation, the MK2554 dynamic load enhancer maintains fast and stable regulation of the output voltage.

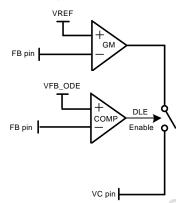



Figure 18. Dynamic Load Enhancer

When the output voltage is below  $V_{FB\_ODE}$ , the comparator COMP is set high, dynamic load enhancer is activated with an extra current source (current value associated with the  $V_{FB}$ - $V_{REF}$ ) raising VC pin voltage rapidly. Therefore, the PFC output is prevented from dropping too low, and the transient response is improved.

### 8.3.6 Multiplier Voltage

The multiplier serves two main purposes, with the first one is for power protection. Multipliers generate  $I_{CS}^*$   $V_{BO}$ , when  $I_{CS}^*$   $V_{BO}$  is greater than  $I_{OPL}$ , the MOSFET is turned off. The second purpose is to generate  $I_M$  for loop control. The multiplier outputs a current  $I_M$ , flows out of the VM pin and generates voltage on the VM pin after passing through a resistor  $R_{VM}$ . With an external capacitor  $C_{VM}$  connected to the multiplier voltage VM pin to bypass the high–frequency component of VM. MK2554 operates in average current control mode. Otherwise, it operates in peak current control mode. The current  $I_M$  can be calculated in Equation 5, k is the current gain.

$$I_{M} = k \frac{I_{CS} * V_{BO}}{V_{C} - V_{C \text{ min}}}$$
 (5)

Where, the  $V_{BO}$  is the input voltage signal on the BO pin, which is proportional to the rms input voltage.  $I_{CS}$  is the sense current proportional to the inductor current  $I_L$  as described in 9.3.3. The  $V_C$  is the control voltage signal, the output voltage of operational trans-conductance amplifier (OTA). The  $V_{C\_min}$  can be regarded as a constant, equal to  $V_{C\_min}$ .

The PFC modulation and timing diagram is shown in Figure 19. The MOSFET on time is generated by the reference voltage V<sub>REF</sub>, multiplier voltage VM and ramp voltage V<sub>RAMP</sub>.



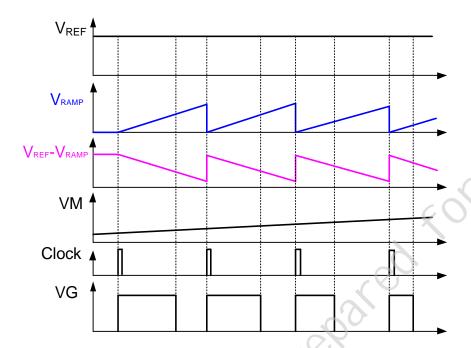



Figure 19. MK2554 Modulation and Timing Diagram

Meraki confidential



# 9. Application and Implementation

# 9.1 Typical Applications

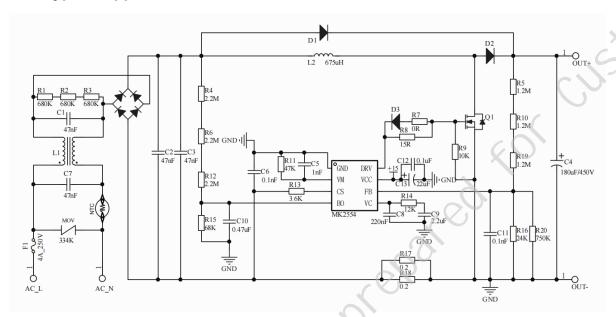



Figure 20. Reference Design Circuit

Meraki confidential



# 10. Power Supply Recommendations

# 11. Layout

### 11.1 Layout Guidelines

To achieve high performance of the MK2554, the following layout tips must be followed:

- 1. Use separate clean traces for VCC and GND pins.
- 2. At least one low-ESR ceramic bypass capacitor(100nF) must be used. Place the capacitor as close as possible to the MK2554 VCC and GND pins.
- 3. The GND pin on the ground plane needs to route with a short and wide trace, or use a GND plane underneath the IC connected to the GND pin as well.
- 4. The effectiveness of the filter capacitors on the signal pins (BO, VC, VM) depends upon the integrity of the ground return.
- 5. The pinout of the MK2554 is ideally suited for separating the high di/dt induced noise on the power ground from the low current quiet signal ground required for adequate noise immunity.
- 6. A star point ground connection at the GND pin of the device can be achieved with a simple cut out in the ground plane.
- 7. The capacitors on CS and FB must all be returned directly to the quiet portion of the ground plane.
- 8. The trace from the DRV pin to the gate of the MOSFET needs to be as short as possible.

### 11.2 Layout Example

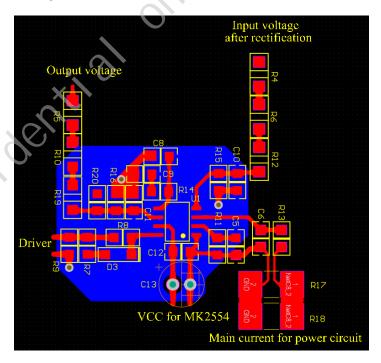



Figure 21. MK2554 Layout Example



# 12. Device and Documentation Support

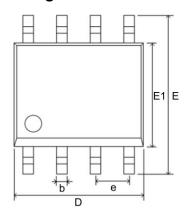
- 12.1 **Device Support**
- 12.2 **Documentation Support**
- **Receiving Notification of Documentation Updates** 12.3
- 12.4 **Support Resources**
- 12.5 **Trademarks**

#### 12.6 **Electrostatic Discharge Caution**



This integrated circuit can be damaged by ESD. Meraki Integrated recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


Meraki dentidentid

Chefolley



# 13. Mechanical, Packaging

# 13.1 Package Size



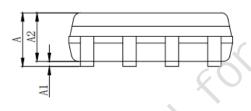



Figure 22. SOP-8 Top View

Figure 23. SOP-8 Side View



Figure 24. SOP-8 Side View

| SYMBOL   | Dimensions In Millimeters |        |  |  |  |
|----------|---------------------------|--------|--|--|--|
| OTIVIDOL | MIN                       | MAX    |  |  |  |
| A        | 1.30                      | 1.75   |  |  |  |
| A1       | 0.05                      | 0.25   |  |  |  |
| A2       | 1.25                      | 1.65   |  |  |  |
| b        | 0.33                      | 0.51   |  |  |  |
| С        | 0.20                      | 0.25   |  |  |  |
| D        | 4.7                       | 5.1    |  |  |  |
| E        | 5.8                       | 6.2    |  |  |  |
| E1       | 3.8                       | 4.0    |  |  |  |
| е        | 1.27                      | 0(BSC) |  |  |  |
| L        | 0.40                      | 1.27   |  |  |  |
| θ        | 0°                        | 8°     |  |  |  |
|          |                           |        |  |  |  |

#### Note:

(1) This drawing is subject to change without notice



#### 13.2 **Recommended Land Pattern**

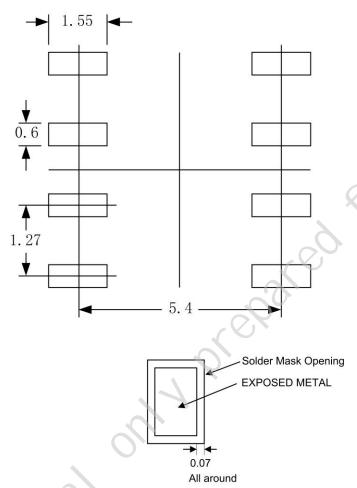



Figure 25. Recommended Land Pattern

#### Notes: (continued)

- (1) All linear dimensions are in millimeters.
- (2) It is recommended that vias under paste be filled, plugged or tented.



# 14. Reel and Tape Information

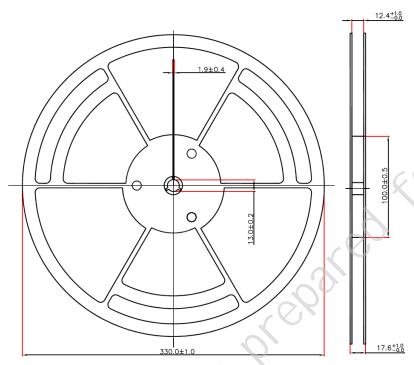



Figure 26. Reel Dimensions

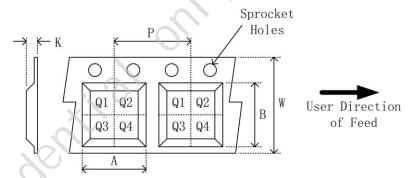



Figure 27. Tape Dimensions and Quadrant Assignments for PIN 1 Orientation in Tape

| Davida       | Package | Dina | SPQ   | Α       | В       | K       | Р     | W      | Pin1     |
|--------------|---------|------|-------|---------|---------|---------|-------|--------|----------|
| Device       | Type    | Pins | (pcs) | (mm)    | (mm)    | (mm)    | (mm)  | (mm)   | Quadrant |
| MK2554X65AB  | SOP-8   | 8    | 4000  | 6.5±0.1 | 5.4±0.1 | 2.0±0.1 | 8±0.1 | 12±0.1 | Q1       |
| MK2554X130AB | SOP-8   | 8    | 4000  | 6.5±0.1 | 5.4±0.1 | 2.0±0.1 | 8±0.1 | 12±0.1 | Q1       |
| MK2554X200AB | SOP-8   | 8    | 4000  | 6.5±0.1 | 5.4±0.1 | 2.0±0.1 | 8±0.1 | 12±0.1 | Q1       |



# 15. Tape and Reel Box Dimensions

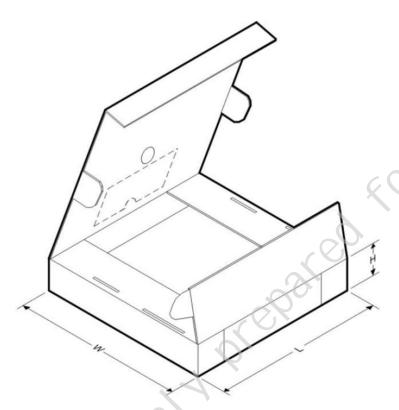



Figure 28. Box Dimensions

| Device       | Package<br>Type | Pins | SPQ<br>(pcs) | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) |
|--------------|-----------------|------|--------------|----------------|---------------|----------------|
| MK2554X65AB  | SOP-8           | 8    | 8000         | 360            | 360           | 65             |
| MK2554X130AB | SOP-8           | 8    | 8000         | 360            | 360           | 65             |
| MK2554X200AB | SOP-8           | 8    | 8000         | 360            | 360           | 65             |