Single-Port IEEE 802.3af/at PSE Controller ## 1. Description The TS16D01 is a high-density integrated autonomous single Ethernet port power sourcing equipment (PSE) controller designed for use in IEEE 802.3af/at Power over Ethernet (PoE) systems. The device provides powered device (PD) detection, classification, current limit, load disconnect detection, and operating current levels. The device features intelligent protection circuitry and allows the delivered to PD power up to 30W. The device integrates a 0.3Ω power MOSFET and a current-sensing resistor, which enables the non-PoE protocol adapter to be feasibly retrofitted into a PSE adapter with the PoE protocol only requiring a few external components. The TS16D01's LED pin is an open-drain output. The pin outputs simple digital logic signals, which indicate various operating statuses and fault conditions. The device supports Midspan or Endpoint mode. The Midspan mode function has a longer detection back-off timer. ## 2. Applications - IEEE 802.3af and 802.3at Power-Sourcing Equipment (PSE) - Power over Ethernet Switches/Routers - IP Phone Systems - IP Camera Systems - 5G Small Cells #### 3. Features - IEEE 802.3af and 802.3at compatible - Fully autonomous operation, no external controller required - Up to 30W for PSE Applications - 0.2mA standby current (Midspan mode) - Integrated an 80V 0.3Ω power MOSFET and current-sensing resistor - Multi-point detection - Class 3 and Class 4 configuration - Supports reset operation - LED status indication - Supports Midspan and Endpoint modes - 8-pin ESOP-8 package with thermal pad # 4. Typical Application Figure 1. Typical Application Diagram for 802.3at Midspan Configuration ## 5. Order Information | Order Part Number | Descriptions | |-------------------|-----------------------| | TS16D01GAD | ESOP-8, tape, 4k/reel | # 6. Pin Configuration and Functions Figure 2. Pin Function (top view) **Table 1. Pin Functions** | Р | in | I/O | Description | |-----|--------|------------------------|--| | NO. | Name | 1/0 | Description | | 1 | DRAIN | Analog Power
Output | MOSFET drain output. | | 2 | VPWR | Analog Power Input | Positive PoE voltage (+44V to 57V) relative to AGND. | | 3 | TEST | - 0 | Connect to AGND. | | 4 | AF/AT | Digital Input | Pull up to internal VDD rail with 10µA current. Connect to AGND for AF configuration, leave floating for AT configuration. | | 5 | MIDb | Digital Input | Pull up to internal VDD rail with $10\mu A$ current. Connect to AGND to set 2.7 seconds detection backoff timing (Midspan), leave floating for Endpoint configuration. | | 6 | RESETb | Digital Input | Pull up to internal VDD rail with $20\mu A$ current. Active low device reset input. Connect a $120k\Omega$ to $200k\Omega$ resistor to AGND. | | 7 | LED | Digital Output | Open drain output pin, turn on an external LED when a PoE PD is connected and powered. Refer to LED section for more details. | | 8 | AGND | Analog Ground | Analog ground. | | 9 | EPAD | _ | Exposed pad, it should be connected to AGND, connect to power ground plane for better thermal performance. | ## 7. Specifications ## 7.1 Absolute Maximum Ratings (1) | | | MIN | MAX | Units | |---|---|------|-----|---------------| | | VCC VPWR, DRAIN to AGND | -0.3 | 80 | | | Input voltages | LED to AGND | -0.3 | 35 | V | | | TEST, AF/AT,
RESETb, MIDb to
AGND | -0.3 | 7 | 5 | | Operating Junction Temperature, T _J | | -40 | 150 | | | Storage Temperature, T _{stg} | | -65 | 160 | ${\mathbb C}$ | | Soldering Temperature (10 second), T _{sld} | | (8) | 260 | | #### Note: (1) Stresses beyond the "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated in "RECOMMENDED OPERATING CONDITIONS". Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ## 7.2 ESD Ratings | | | Value | Units | |----------------------------|--|-------|-------| | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | 500 | V | | discharge V _{ESD} | Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | 2000 | ٧ | #### Notes: - JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process - JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process ## 7.3 Recommended Operating Conditions | | | MIN | MAX | Units | |----------------------|----------------------------|-----|------|-------| | | VPWR, DRAIN to AGND | 32 | 60 | | | Decemmended | LED to AGND | 0 | 30 | | | Recommended | TEST, AF/AT, MIDb, RESETb, | 0 | 5.5 | V | | Operation Conditions | MIDb to AGND | | | (| | | Junction Temperature | -40 | +125 | (°C) | #### 7.4 Thermal Information | Package Thermal Resistance θ_{JA} (Junction to ambient) 30 θ_{JC} (Junction to case) 10 | Package Thermal Resistance θ_{JA} (Junction to ambient) 30 θ_{JC} (Junction to case) 10 | Package Thermal θ_{JA} (Junction to ambient) 30 °C/\(\text{\circ}\) | Package Thermal Resistance θ_{JA} (Junction to ambient) 30 θ_{JC} (Junction to case) 10 | Package Thermal Resistance θ_{JA} (Junction to ambient) 30 θ_{JC} (Junction to case) 10 | Package Thermal Resistance θ_{JA} (Junction to ambient) 30 θ_{JC} (Junction to case) 10 | Package Thermal Resistance θ_{JA} (Junction to ambient) 30 θ_{JC} (Junction to case) 10 | Package Thermal Resistance θ_{JA} (Junction to ambient) 30 θ_{JC} (Junction to case) 10 | Package Thermal Resistance θ_{JA} (Junction to ambient) 30 θ_{JC} (Junction to case) 10 | | | | | |---|---|--|---|---|---|--|---|---|-----------------|-------------------------------------|-------|---------| | °C/M | Resistance θ_{JC} (Junction to case) 10 | Resistance θ _{JC} (Junction to case) 10 °CΛ | Resistance θ_{JC} (Junction to case) 10 | Resistance θ_{JC} (Junction to case) 10 | Resistance θ _{JC} (Junction to case) 10 °CΛ | Resistance θ _{JC} (Junction to case) 10 °CΛ | Resistance θ_{JC} (Junction to case) 10 | Resistance θ_{JC} (Junction to case) 10 | | | Value | Unit | | °C/M | Resistance θ_{JC} (Junction to case) 10 Package Thermal | θ_{JA} (Junction to ambient) | 30 | | | A OKERAI | orly brebai | ACINITAL ORIGINAL DIRECTOR ORIGINA DIRECTOR ORIG | only prepai | confidential only prepare | confidential only prepair | CONFIDENTIAL ONLY PREPARE | Confidential only prepar | confidential only prepar | | | 10 | _ °C/W | | | | SOLKI OJ | Elgentia, or | COULTING OF | CONFIL GENTLING | Coulting of the contract th | Conflidential C. | COULT GENTLING | | anly project | | ı | #### 7.5 Electrical Characteristics Conditions are -40°C < T_J < 125 °C, V_{PWR} = 54 V unless otherwise noted. Typical values are at 25 °C. All voltages are with respect to AGND unless otherwise noted. | Para | meter | Test Conditions | MIN | TYP | MAX | UNIT | |-------------------------------------|--|--|------|------|------|------| | Power Supply Volt | tages | | | | | | | Vuvlo_on | V _{PWR} UVLO Input
Voltage | | 25.5 | 28 | _ | V | | Vuvlo_off | V _{PWR} UVLO Input
Voltage | | _ | 31 | 33.5 | V | | Power Supply Cur | rents ⁽¹⁾ | | | 6 | O. | | | l _{PWR} | V _{PWR} Supply | During normal operation (Detection + Idle), MIDb=Float | - | 0.45 | _ | mA | | T WIX | Current | During normal operation (Detection + Idle), MIDb=GND | 76 | 0.2 | _ | mA | | Detection Specific | ations | | O- | | | | | I _{DET_SC} | Detection Short
Circuit Current | Measured when DRAIN is shorted to VPWR | _ | 1.5 | 5 | mA | | Vport | Detection Voltage When RDET = 24 | V _{PWR} - V _{DRAIN} , primary detection voltage | 2.8 | 4 | | ٧ | | VPORT | kΩ | V _{PWR} - V _{DRAIN} , secondary detection voltage | _ | 8 | 10 | V | | T _{DET} | Detection Time | 0 | _ | 320 | _ | ms | | T _{IDLE} | Detection Idle | MIDb=Float | _ | 315 | ı | ms | | TIDLE | Time | MIDb=GND | _ | 2700 | 1 | ms | | R _{GOOD} (1) | Signature
Resistance | | _ | 25 | | kΩ | | R _{DET_MIN} ⁽¹⁾ | Minimum Signature Resistance @ PD | | 15 | 17 | 19 | kΩ | | R _{DET_MAX} (1) | Maximum Signature Resistance @ PD | | 26.5 | 30 | 33 | kΩ | | CREJECT | Reject Signature
Capacitance | | _ | 2.2 | 10 | μF | | Classification Spe | cifications | | | | | | | V _{CLASS} | Class Event
Voltage | V _{PWR} - V _{DRAIN} , Class current
between 0 and 51 mA | 15.5 | _ | 20.5 | V | TS16D01 | | | | | | 101 | <u>ו'טעט</u> | |---------------------------|--------------------|--|------------|------|-----------|--------------| | Iclass_lim | Class Event | Measured when DRAIN is | 51 | | 95 | mA | | 102100_EIW | Current Limitation | shorted to VPWR | • | | | | | T_CLE | Class Event | Assigned PD Class 0, 1, 2, 3, | 6 | _ | 30 | ms | | · CLL | Timing | 4 | Ů | | | | | | | Class Signature 0 | 0 | _ | 5 | mA | | | | Threshold between Class | 5 | | 8 | mA | | | | Signature 0 or 1 | , | | 0 | IIIA | | | | Class Signature 1 | 8 | _ | 13 | mA | | | | Threshold between Class | 13 | | 16 | mA | | | | Signature 1 or 2 | 13 | | | ША | | | Classification | Class Signature 2 | 16 | - | 21 | mA | | I _{CLASS_REGION} | Current Region | Threshold between Class | 21 | | 25 | mA | | | Current Region | Signature 2 or 3 | 21 | | 25 | ША | | | | Class Signature 3 | 25 | ١ | 31 | mA | | | | Threshold between Class | 24 | | 25 | m Λ | | | | Signature 3 or 4 | 31 | _ | 35 | mA | | | | Class Signature 4 | 35 | _ | 45 | mA | | | | Threshold between Class | 45 | | 54 | Λ | | | | Signature 4 or invalid Class | 45 | _ | 51 | mA | | Classification Mark | Specifications | | | | | | | ., | Mark Event | V _{PWR} - V _{DRAIN} , Mark current | _ | | 40 | | | Vmark | Voltage | between 0 and 5 mA | 7 | _ | 10 | V | | | Mark Event | Measured when DRAIN is | 5 4 | | 0.5 | ^ | | I _{MARK_LIM} | Current Limitation | shorted to VPWR | 51 | _ | 95 | mA | | | Mark Event | Assissant DD Olses 4 | | | 40 | | | T _{ME} | Timing | Assigned PD Class 4 | 6 | _ | 12 | ms | | Current Limit and | Overcurrent | | | | | | | | Overcurrent | TA=25°C, AF/AT=0b | | 375 | | mA | | Ісит | Threshold | TA=25°C, AF/AT=1b | | 640 | | mA | | T. (1) | Overcurrent Time | | 50 | | 7.5 | | | Тсит | Limit | | 50 | _ | 75 | ms | | | Output Current in | TA 050C -II : 155 | | | | | | Inrush | POWER_UP | TA=25°C, all assigned PD | _ | 425 | _ | mA | | | State | Classes, V _{PORT} > 30 V | | | | | | | | TA=25°C, Power-on, assigned | | 425 | | m ^ | | l | Current Limit | PD Class 0, 1, 2, 3 | | 420 | | mA | | I _{LIM} | Guileill Lillill | TA=25°C, Power-on, assigned | | 716 | | mA | | | | PD Class 4 | | 7 10 | | 111/ | TS16D01 | * * * | | | | | <u> </u> | <u>ו טעט</u> | |---------------------|------------------------------|--|-----|------------|----------|--------------| | Тым | Short Circuit Time | Power-on, assigned PD Class 0, 1, 2, 3 | 50 | _ | 75 | ms | | I LIM | Limit | Power-on, assigned PD Class 4 | 10 | _ | 75 | ms | | Load Disconnect | | | | | | | | IPORT_DIS | DC MPS Current | Current per pairset | _ | 7.5 | _ | mA | | Тмрро | PD MPS Dropout
Time Limit | | 300 | _ | 400 | ms | | MOSFET On Resis | tance | | | | | | | R _{DSON} | FET Resistance | 100mA drain to source current | _ | 290 | (-) | mΩ | | Digital Pin Charact | teristics | | | X | | | | VıL | Input Low Voltage | AF/AT, RESETb, MIDb | _ | \ _ | 1 | V | | V _{IH} | Input High Voltage | AF/AT, RESETb, MIDb | 2 | <u> </u> | _ | V | | I _{LK} | Input Leakage | AGND < VIN < VDD, AF/AT,
RESETb, MIDb | -1 | _ | 1 | μA | | lpu | Pullup Current to
VDD | AF/AT, MIDb = 0V | -13 | -10 | -7 | μA | | l _{PU} | Pullup Current to
VDD | RESETb = 0V | -26 | -20 | -14 | μA | | Over Temperature | Protection (1) | 14 | - | | | - | | T _{RISE} | Rising Threshold | | | 150 | _ | $^{\circ}$ | | Tfall | Recover
Threshold | 0, | _ | 130 | _ | $^{\circ}$ | #### Note: ⁽¹⁾ Values are verified by characterization on bench, not tested in production. ## 7.6 Typical Characteristics Typical values are at V_{PWR} = 54V, TA = 25°C, Endpoint mode with a Class 0 PD, unless otherwise noted. Figure 3. V_{PWR} UVLO Threshold Voltage vs. Temperature Figure 4. Digital Pin Pullup Current to VDD Figure 5. Voltage Difference Between Detection Points vs. Temperature Figure 6. DC Maintain Power Signature Figure 7. Internal FET Resistance vs. Temperature Figure 8. VPWR Current vs. Temperature (RESETb = 0V) Figure 9. Classification and Mark Current Limit vs. Temperature Figure 10. Overcurrent Threshold vs. Temperature Figure 11. Current Limit Threshold vs. Temperature Figure 12. Startup with a valid PD Figure 15. Detection with invalid PD (24k Ω Figure 16. Detection with invalid PD (15k Ω) and 10 μ F) Figure 17. Overcurrent restart delay Figure 18. Detection with output shorted V_{PWR} - V_{DRAIN} 1V/div 0V Class 3 Class 2 Class 2 Class 1 Class 1 Class 0 Figure 19. Detection in Midspan with invalid PD (15kΩ) Figure 20. Classification with different PD classes (0 to 3) Time(200ms/div) Time(200ms/div) Figure 21. Classification with PD Class 4 Figure 22. LED function of the PD powered from V_{PWR} Figure 23. LED function of the PD powered from V_{RESETb} Figure 24. LED function of ICUT Time(200ms/div) # 8. Detailed Description #### 8.1 Overview The TS16D01 is a high-density integrated autonomous single-port PSE controller designed for use in IEEE 802.3af/at PoE systems. The device provides PD detection, classification, current limit, load disconnect detection and operating current levels. The TS16D01 provides up to 30W to the Ethernet port. Besides, the TS16D01 features intelligent protection circuitry including input undervoltage lockout, over-temperature protection, overcurrent timeout, port short protection, load-disconnect detection timeout, port voltage slew-rate limit during startup, operating status, fault conditions indicated by LED. ## 8.2 Functional Block Diagram Figure 25. Block Diagram #### 8.3 Feature Description #### 8.3.1 Reset The TS16D01 is reset by power-up and hardware reset. Reset condition is cleared once V_{PWR} rises above the UVLO threshold. The TS16D01's RESETb pin is tied to internal VDD through a pull-up resistance. In a typical application, connect a 120k Ω to 200k Ω resister to AGND. However, if the RESETb pin is driven low (> 110us, typ), the TS16D01 is reset. Once in the reset state, the port output and LED detection function are disabled. At the end of a reset event, the TS16D01 latches in the state of AF/AT and MIDb input signals. During normal operation, changes of the AF/AT and MIDb inputs are ignored, and these inputs can only be changed at any time prior to the end of a reset state. #### 8.3.2 Midspan Mode The TS16D01 supports an Endpoint or Midspan PSE network configuration. In midspan mode, when failed detections occur, the device waits about 2.7s before attempting to detect again. Like the RESETb pin, MIDb pin is also tied to internal VDD through a pull-up resistance. The device is configured as Endpoint mode by default unless the MIDb pin is driven low. #### PD Detection and Classification Detection function of the TS16D01 is the most important, which determines if the remote equipment connected to a PSE is capable of receiving power. To avoid false detection in noisy environments, the TS16D01 detects a PD by using a robust 4-point detection algorithm to reliably determine the signature resistance of the PD. During detection phase, the TS16D01 keeps the internal MOSFET off and drives probe voltages with two different levels through the DRAIN pin. The device uses a specific algorithm to calculate the PD signature resistance by sampling the current injected into the port. Once the detection result is RGOOD, the TS16D01 will perform Physical Layer classification by driving a class probe to determine the PD's class signature. The number of class events and mark events determines the PD requested power. Figure 26 shows a timing diagram of PD detection and classification for a Type 1 PSE powering a Type 1 PD. In this example, the TS16D01 produces one class event to a Type 1 PD without any mark event. As shown in Figure 27, two class events and two mark events are driven by the TS16D01 for a Type 2 PSE powering a Class 4 PD. 15 OME Figure 26. Type 1 Detection, Classification, and Port Power-Up Sequence Figure 27. Type 2 Detection, Classification, and Port Power-Up Sequence #### 8.3.4 Inrush After classification, if the TS16D01 decides to power the PD, it will first go through the inrush phase. During inrush, the PSE limits the amount of current being delivered for at least 60ms. Between 1ms and 60ms after power-on, the inrush current of the TS16D01 is limited to no more than 450mA ## 8.3.5 Operating Power During a nominal powering state, the TS16D01 checks for abnormal conditions, including overcurrent, PD disconnection, and short-circuits. Meanwhile, the TS16D01 assigns the class required for PD to PD. The TS16D01 achieves the purpose of distributing power by controlling the current called ICUT. Once the current exceeds the ICUT as least TCUT, the TS16D01 immediately cuts off the power and goes through detection phase. TS16D01 v0.82 www.meraki-ic.com 14 #### 8.3.6 Maintain Power Signature When the TS16D01 is supplying power to a PD, the TS16D01 keeps on monitoring the current drawn in order to make sure that the PD is still connected. The minimum current that the PD must draw to avoid being disconnected is named the Maintain Power Signature (MPS). The TS16D01 is designed to remove power when the MPS is absent for at least 350ms, ensuring that disconnected cables do not remain powered. In order to further reduce minimum standby power consumption for PoE systems, the TS16D01 only requires that PD must draw a current above IPORT DIS for at least TMPS with no more than TMPDO between pulses. #### 8.3.7 Current Limit and Voltage Foldback The TS16D01 integrates a current-sensing resistor connected between the internal MOSFET and AGND to monitor the loop current. During normal operating conditions, the current running through the current-sensing resistor never exceeds the threshold ILIM. Otherwise, the internal feedback circuit regulates the driver voltage of the MOSFET to limit the current. Besides, the TS16D01 senses the DRAIN voltage and regulates the current-limit value, which helps to reduce the internal MOSFET power dissipation. #### 8.3.8 LED Signals The TS16D01's LED pin is open-drain output. The pin outputs simple digital logic signals, which indicate various operating statuses and fault conditions. The LED pin can be directly connected to the VIN port through pull -up resistors, but an external pull-down resistor is required to reduce the voltage stress of the LED pin. As shown in Figure 25, the LED pin outputs various signals by controlling the internal MOSFET. Once the MOSFET is turned on, the current is injected to AGND through the internal integrated resistor, where its resistance value is approximately $3.7 k\Omega$. Figure 28 shows the recommended LED connection circuit. Figure 28. Recommended LED connection circuit The following table lists LED pin states which indicate various operating statuses and fault conditions of the TS16D01. #### Table 2. LED pin functions | LED off | LED off Looking for a valid detection signature LED blinking only several times CUT, port short fault, OTP LED off LED off LED off LED blinking only several times Port successfully powered at requested power level on. The MOSFET that controls the LED output is turned off. The MOSFET that controls the LED output is alternately switched on and off several times, then off. | LED on Port successfully powered at requested power level on. LED off Looking for a valid detection signature | LED on Port successfully powered at requested power level on. LED off Looking for a valid detection signature off. LED blinking only several times CUT, port short fault, OTP The MOSFET that controls the LED output alternately switched on and off several times, then of the controls of the LED output is turned off. | LED Indication | | oin functions | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|---------------------------------------------------------| | LED off | LED off | LED of Looking for a valid detection signature off. LED blinking only several times CUT, port short fault, OTP of several times of the LED output is turned off. LED blinking only several times sev | LED on requested power level on. LED off Looking for a valid detection signature off. LED blinking only several times reveral times reverse in the several times of ti | | Status | Note | | LED off Looking for a valid detection signature LED blinking only several times Error condition, such as OCP, ICUT, port short fault, OTP LED blinking only several times Error condition, such as OCP, ICUT, port short fault, OTP | LeD off Looking for a valid detection Signature | requested power level on. Leo off Looking for a valid detection signature off. LED blinking only several times CUT, port short fault, OTP The MOSFET that controls the LED output is alternately switched on and off several times, then off the controls the LED output is alternately switched on and off several times. | requested power level on. LED off Looking for a valid detection signature off. LED blinking only several times ICUT, port short fault, OTP The MOSFET that controls the LED output alternately switched on and off several times, then of the control of the control of the LED output alternately switched on and off several times, then of the control of the LED output alternately switched on and off several times. | I FD on | Port successfully powered at | The MOSFET that controls the LED output is turned | | LED blinking only several times Error condition, such as OCP, The MOSFET that controls the LED output is alternately switched on and off several times, then off | LED blinking only several times Error condition, such as OCP, ICUT, port short fault, OTP | signature off. LED blinking only several times Fror condition, such as OCP, ICUT, port short fault, OTP alternately switched on and off several times, then off | LED off LED blinking only several times Error condition, such as OCP, ICUT, port short fault, OTP alternately switched on and off several times, then of the condition | LLD OII | requested power level | on. | | signature off. LED blinking only several times Error condition, such as OCP, ICUT, port short fault, OTP The MOSFET that controls the LED output is alternately switched on and off several times, then off in the several times ICUT, port short fault, OTP sho | LED blinking only several times Error condition, such as OCP, ICUT, port short fault, OTP The MOSFET that controls the LED output is alternately switched on and off several times, then off | signature off. LED blinking only several times Error condition, such as OCP, ICUT, port short fault, OTP alternately switched on and off several times, then off | signature off. LED blinking only several times CUT, port short fault, OTP The MOSFET that controls the LED output alternately switched on and off several times, then of the control t | LED off | - | | | several times ICUT, port short fault, OTP alternately switched on and off several times, then off | several times ICUT, port short fault, OTP alternately switched on and off several times, then off | several times ICUT, port short fault, OTP alternately switched on and off several times, then off | several times ICUT, port short fault, OTP alternately switched on and off several times, then of | | | | | confidential only prepared for | confidential only prepared for | confidential only propared for | TS16D01 v0.82 www.meraki-ic.com | | | | | CONFI DENTIL AND ONLY | CONFI GENTLI AL | Confri denti al | TS16D01 v0.82 www.meraki-ic.com | several times | ICUT, port snort fault, OTP | alternately switched on and off several times, then off | | | | | TS16D01 v0.82 www.meraki-ic.com | | | A Prepared | # 9. Application Examples Figure 29. Application Schematic Example ## 10. Power Supply Recommendations ## 11. Layout ## 11.1 Layout Guidelines To achieve high performance of the TS16D01, the following layout tips must be followed. - At least one low-ESR ceramic bypass capacitor for the VPWR pin must be used. Place the capacitor as close as possible to the TS16D01 VPWR pin. - 2. The unidirectional TVS connected between VPWR and DRAIN must be employed to prevent an external lightning strike and surge current from damaging the chip. - The recommended voltage of the LED pin is not higher than 30V and the current does not exceed 1mA, otherwise it may damage the pin. The pin voltage can be reduced by a pulldown resistor divider. - 4. TEST pin is recommended to be tied to GND, and thermal pad is used for chip heat dissipation. - 5. Use short, wide traces whenever possible for high power paths. ## 11.2 Layout Example Figure 30. Evkit Layout (Tope Layer) Figure 31. Evkit Layout (Bottom Layer) ## 12. Device and Documentation Support - 12.1 Device Support - 12.2 Documentation Support - 12.3 Receiving Notification of Documentation Updates - 12.4 Support Resources - 12.5 Trademarks ### 12.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. We recommend that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device to not meet its published specifications. Meraki confidential TS16D01 v0.82 www.meraki-ic.com © 2024 Meraki IC Confidential. Classified: Authorized Customer Only # 13. Mechanical, Packaging Figure 32. Recommended Land Pattern (mm) Figure 33. TS16D01 Top View Figure 34. TS16D01 Side View Figure 35. TS16D01 Side View | | CVMDOL | Millin | neter | |------------|--------|--------|-------| | | SYMBOL | MIN | NOM | | | Α | 1.300 | 1.700 | | | A1 | 0.000 | 0.100 | | | A2 | 1.350 | 1.550 | | | b | 0.330 | 0.510 | | | С | 0.170 | 0.250 | | | D | 4.700 | 5.100 | | | D1 | 3.050 | 3.250 | | | Е | 3.800 | 4.000 | | | E1 | 5.800 | 6.200 | | | E2 | 2.160 | 2.360 | | (0 | е | 1.270(| (BSC) | | | L | 0.400 | 1.270 | | | θ | 0° | 8° | | | | | | # 14. Reel and Tape Information # **Reel Dimensions** Reel Diameter Reel Width(W1) | Α0 | Dimension designed to accommodate the component width | |----|-----------------------------------------------------------| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## **Quadrant Assignments For Pin 1 Orientation In Tape** | Device | Package
Type | Pins | Quantities | Reel
Diameter
(mm) | Reel Width
W1(mm) | |---------|-----------------|---------|------------|--------------------------|----------------------| | TS16D01 | ESOP8 | 8 | 4000 | 330 | 12.4 | | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1
Quadrant | | 6.4 | 5.4 | 2.1 | 8.0 | 12.0 | Q1 | Chekowsk # 15. Tape and Reel Box Dimensions